Mitch Richling: Collatz Fractal
Author: | Mitch Richling |
Updated: | 2024-10-31 |
Table of Contents
1. Introduction
The Collatz conjecture is a famous unsolved math problem. In studying the Collatz conjecture, mathematicians have defined the Collatz map and it's smooth continuation:
Of course, whenever fractal-heads see a smooth complex function, they want to iterate the thing and make pretty pictures. :)
2. Algorithms
We render the Collatz Fractal using the
#include "ramCanvas.hpp" int main(void) { std::chrono::time_point<std::chrono::system_clock> startTime = std::chrono::system_clock::now(); const int NUMITR = 164; const int IMXSIZ = 7680/2; const int IMYSIZ = 7680/2; //mjr::ramCanvas3c8b theRamCanvas(IMXSIZ, IMYSIZ, -3.75, 3.75, -3.75, 3.75); // 56 centered 0+0i //mjr::ramCanvas3c8b theRamCanvas(IMXSIZ, IMYSIZ, -0.99-0.15, -0.99+0.15, -0.15, 0.15); // 28 centered near 1+i mjr::ramCanvas3c8b theRamCanvas(IMXSIZ, IMYSIZ, -0.99-0.03, -0.99+0.03, -0.03, 0.03); // 28 same, zoomed in for(int y=0;y<theRamCanvas.getNumPixY();y++) { for(int x=0;x<theRamCanvas.getNumPixX();x++) { std::complex<double> z = theRamCanvas.int2real(x, y); int count = 0; while((std::norm(z)<1e10) && (count<=NUMITR)) { z = 0.25 * (2.0 + 7.0*z - (2.0 + 5.0 * z) * std::cos(z * std::numbers::pi)); count++; } if(count < NUMITR) theRamCanvas.drawPoint(x, y, mjr::ramCanvas3c8b::colorType::csCCsumRGB::c(static_cast<mjr::ramCanvas3c8b::csIntType>(count*28))); } } theRamCanvas.writeTIFFfile("collatz.tiff"); std::chrono::duration<double> runTime = std::chrono::system_clock::now() - startTime; std::cout << "Total Runtime " << runTime.count() << " sec" << std::endl; }
The above program will generate this picture: